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Abstract—Our third generation synthesis of Tamiflu was achieved in 12 steps from commercially available starting materials, using

the Diels—Alder reaction and Curtius rearrangement as key steps.

© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Avian influenza (H5N1) is caused by a particularly
lethal strain of the influenza virus. With increasing fear
of a potential new influenza pandemic, the anti-influenza
drug Tamiflu (1)! has become extremely important for
protecting humans against this lethal flu. Considering
the worldwide demand for Tamiflu, an improved pro-
duction process is urgently needed.

Currently, three asymmetric syntheses of Tamiflu have
been reported; Roche’s commercial route utilizing natu-
rally-occurring shikimic acid as the starting material,?
Corey’s route using the catalytic asymmetric Diels—
Alder reaction developed by his group,® and the route
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Scheme 1. Synthetic plan.
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using the catalytic desymmetrization of meso-aziridines
developed by our group.* In this Letter, we report a con-
ceptually different third generation short synthesis of
Tamiflu that utilizes the Diels—Alder reaction and
Curtius rearrangement as key steps.

2. Synthesis

Our synthetic plan is shown in Scheme 1. The 3-pentyl-
oxy group can be introduced stereoselectively with a
ring-opening reaction of aziridine prepared from 2.*
Compound 2 should be obtained via the Ni(cod),-cata-
lyzed 1,4-addition of TMSCN to enone 3, followed by
oxidation,* and subsequent stereoselective 1,2-reduction
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of the resulting B-cyanoenone. Enone 3 would be
synthesized from 4 through O-deprotection and oxida-
tion. The key 1,2-trans-diamide moiety of 4 would be
introduced from diacid chloride 6 through acyl azide
formation and Curtius rearrangement. Functionalized
cyclohexene 6 would be obtained via the Diels—Alder
reaction between diene 7 and dienophile 8. To quickly
establish this synthetic route, we started our synthesis
without chirality control. We planned to obtain enantio-
merically pure Tamiflu by resolution of an intermediate
using chiral HPLC.

Based on the synthetic plan mentioned above, diacid
chloride 10 was synthesized using the Diels—Alder reac-
tion between 1-(tert-butyldimethylsiloxy)-1,3-butadiene
(9)° and fumaryl chloride (8) (Scheme 2). The reaction
proceeded at 0-60 °C, and product 10 was obtained as
a diastereomixture (endo:exo = 2:1) in an excellent yield.
After evaporation of the solvent, crude 10 was treated
with TMSN;® in the presence of a catalytic amount of
DMAP to afford diacyl azide 11. The Curtius rearrange-
ment proceeded by heating 11 in benzene at 80 °C, and
unexpectedly stable 12 was obtained in a high overall
yield (90%) through three steps from 9 and 8. Diisocya-
nate 12 was pure enough to be used for the next reaction
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without further purification. We then attempted to con-
vert 12 to 13 via ~-BuOH addition. Complex mixtures
were produced, however, and neither mono-tert-butyl-
carbamate nor di-zert-butylcarbamate was obtained un-
der the various conditions examined. The main reaction
pathway might be Boc-protected urea formation
through an intermolecular -BuOH attack to less steri-
cally hindered isocyanate, followed by an intramolecular
addition of the resulting tert-butylcarbamate to the
other neighboring isocyanate.

Thus, an alternative substrate 15 containing a free
hydroxy group that can trap the intermediate isocyanate
in the Curtius rearrangement was designed. Hydroxy-
diacyl azide 15 was synthesized through the Diels—Alder
reaction between commercially available 1-(trimethyl-
siloxy)-1,3-butadiene (14) and fumaryl chloride (8),
followed by TMSN3 addition® in the presence of a cata-
lytic amount of DMAP, and acidic cleavage of trimeth-
ylsilyl ether (Scheme 3). Although this Diels—Alder
reaction afforded a 2:1 (endo/exo) mixture of diastereo-
isomers, undesired exo isomer selectively decomposed
during the acidic cleavage of trimethylsilyl ether. The
key Curtius rearrangement of 15 proceeded cleanly in
distilled ~-BuOH under refluxing conditions, and the
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Scheme 2. Unsuccessful preparation of 1,2-trans-diamide.
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Scheme 3. Successful synthetic route to Tamiflu.

cryst.



K. Yamatsugu et al. | Tetrahedron Letters 48 (2007) 1403—1406 1405

oxazolidin-2-one 16 was produced exclusively. The suc-
cess of this step was due to the rapid intramolecular trap
of the intermediate isocyanate by the neighboring a-allyl
alcohol, followed by the intermolecular addition of
t-BuOH to the other isocyanate. The intramolecular
isocyanate trap was so fast that neither di-zerz-butylcar-
bamate derived from double intermolecular addition of
t-BuOH nor the intramolecular addition of tert-butyl-
carbamate to the other isocyanate (protected urea
formation) was detected. Hydrolysis of the cyclic carba-
mate moiety of 16, followed by N-acetylation, pro-
ceeded uneventfully to afford 17. Oxidation of 17 was,
however, unexpectedly problematic. After intensive
studies, modified Moffat conditions using bulky isobu-
tyric anhydride’-® as an activator of DMSO were deter-
mined to be optimum. Under the optimized conditions,
enone 3 was obtained in a 53% yield via four steps from
acyl azide 15.

At this stage, the resolution of intermediate 3 using chiral
HPLC [Daicel Chiralpak AD-H, 2-propanol/hexane 1/9,
flow 0.6 mL/min, detection at 254 nm: fg 15.4 min
(desired, [oc]g’ —149.2 (¢ 0.313, CHCl3)) and 18.4 min
(undesired, [oc]2D7 +140.9 (¢ 0.313, CHCl3)) was per-
formed, and enantiomerically pure 3 was obtained.

The remaining steps from enantiomerically pure enone 3
to Tamiflu were (1) introduction of the ethoxy carbonyl
group at the B-position of the enone and (2) introduction
of the 3-pentyloxy group. The first step was accom-
plished with 1,4-addition of TMSCN to the enone, fol-
lowed by the oxidation of the resulting TMS-enol
ether. Thus, compound 3 was treated with TMSCN in
the presence of Ni(cod), (50 mol %) and 1,5-cyclooctadi-
ene (50 mol %). The resulting enol silyl ether was sub-
jected to a-bromination, and the subsequent HBr
elimination with triethylamine afforded B-cyanoenone
18.% Stereoselective reduction of the ketone with LiAl-
(Ot-Bu)sH proceeded cleanly to produce 2 in 44% yield
in three steps. Aziridine formation under Mitsunobu
conditions, followed by the ring-opening reaction of
the resulting aziridine with 3-pentanol, afforded
compound 19.* Ethanolysis of the cyanide and cleavage
of the Boc group proceeded in one pot under acidic
ethanol. The free amine form of 1 was formed after
basification. Treatment of the free amine with H;PO,’
produced 1.

In summary, we developed a third generation synthesis
of Tamiflu. An appropriately functionalized cyclohex-
ene skeleton was synthesized through the Diels—Alder
reaction between commercially available diene and
dienophile. The unsymmetrically protected 1,2-trans-
diamine derivative 16 was constructed via Curtius rear-
rangement and subsequent intramolecular trapping of
the resulting isocyanate. These two key reactions
allowed for rapid (12 steps) access to the core structure
of Tamiflu. As a preliminary study, we separated enan-
tiomers using chiral HPLC at the stage of 3. Asymmetric
synthesis of Tamiflu utilizing the catalytic asymmetric
Diels—Alder reaction and investigation of the more
efficient conversion of enone 3 to B-cyanoenone 18 are
currently ongoing.

3. Experimental

3.1. (15",2R",3S5™)-3-Hydroxy-cyclohex-4-ene-1,2-dicar-
bonyl diazide (15)

Fumaryl chloride (8: 7.5ml, 69.6 mmol) was added
slowly to a stirred solution of 1-(trimethylsilyloxy)-1,3-
butadiene (14: 12.3 ml, 70.3 mmol) in THF (352 ml) at
room temperature, and the mixture was stirred at the
same temperature for 2 h. TMSN; (19.6 ml, 148 mmol)
and DMAP (800 mg, 7.0 mmol) were carefully added
at room temperature, and the mixture was stirred at
the same temperature for additional 2 h. After cooling
to 4°C, 1 N HCI aq (70.3 ml, 70.3 mmol) was carefully
added, and the mixture was stirred at the same temper-
ature for 10 min. The organic layer was separated and
the aqueous layer was extracted twice with AcOEt
(500 ml). The combined organic layers were washed with
saturated NaHCOj; solution (150 ml) and brine (150 ml),
dried over Na,SO,, and concentrated to give crude 15,
which was purified by silica gel column chromatography
(SiO, 200 g, hexane/AcOEt=4/1 to 2/1) to give 15
(9.1 g, 38.5mmol; 55% yield) as a colorless oil. 'H
NMR (CDCl;, 500 MHz) 6 6.92-5.86 (m, 2 H), 4.48
(m, 1H), 2.96 (ddd, J=5.3, 11.6, 12.0 Hz, 1H), 2.87
(dd, J=4.0, 12.0 Hz, 1H), 2.49 (ddd, J=5.2, 5.3,
17.7 Hz, 1H), 2.10-2.03 (m, 1H); '*C NMR (CDCl;,
125 MHz) ¢ 181.9, 179.3, 128.7, 127.0, 63.8, 49.6, 37.9,
28.7; IR (neat, cm™') 3412, 2260, 2146, 1710; FAB-
HRMS caled for CsHoNgO5 [M+H]": 237.0731, found:
237.0726.

3.2. (2-Oxo0-2,3,3ap,40,5,7ap-hexahydro-benzoxazol-4-
yl)-carbamic acid tert-butyl ester (16)

The solution of 15 (8.7g, 36.8 mmol) in distilled
t-BuOH (74 ml) was stirred at refluxing temperature
for 5.5 h. Removal of the solvent under reduced pressure
gave crude 16 (9.4 g, 36.8 mmol) as a white solid, which
was used for the next reaction without further purifica-
tion. '"H NMR (CD;OD, 500 MHz) § 6.10 (m, 1H),
5.88-5.86 (m, 1H), 5.04-5.03 (m, 1H), 3.77-3.73 (m,
1H), 3.55-3.50 (m, 1H), 2.37 (ddd, J=5.2, 5.5,
172 Hz, 1H), 2.01-1.96 (m, 1H), 1.44 (s, 9H); °C
NMR (CD;OD, 125MHz) ¢ 161.4, 158.1, 132.7,
123.7, 80.5, 75.3, 56.4, 51.0, 29.8, 28.7; IR (KBr,
em™ ') 3370, 3243, 1747, 1683; ESI-MS m/z 277
[M+Na]"; FAB-HRMS caled for Cj2HoN,O,4
[M-+H]": 255.1339, found: 255.1332.
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